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,\bstract-The nonlinear finite element method is used to solve the axisymmetric one-dimensional
penetration problem for conical and ogiva[ nose shapes. An elastic-plastic theory is used in which
the yield surface consists of a Prager-Drucker surface and a planar cap. Existing analytical solutions
arc used to verify the numerical procedure. The constitutive features investigated include strain
hardening. strain softening. nlte dependence and various forms for the hydrostat. Interface con­
ditions are assumed to be Coulomb friction. fluid layer and no slip. Assumptions are evaluated by
comparing prL-dictions of the resultant retarding force on the pcnetrator to experimental data.
Results indicate that strain hardening of the Prager-Drucker yield surface is of some signilicance
but that rate clfects associated with this surface arc insignific'lIlt. On the other hand. both strain
hardening and rate elfects for the cap part of the model arc very important features. The usc of a
strain softening yield surface results in the prediction of a hydrostatic layer. This elfect is observed
in some experiment,l! tests. Separation of the soil t'r<1m the penetralor is predicted for the ogival
penetrator for sulliciently high velocities of pcnclrati'1n. Overall. the procedure provides a method
for cvalu<lting the relative il11p,'rtance of constitutive features to the penetration process ami shows
how penetr,ltor acceleration data can he uscd to assist in dctermining material parameters.

I:"TRODliCTION

The correlation of material parameters with al:celerometer data from a rigid penetrator has
the potential for several important engineering applil:ations (Backman and Goldsmith.
1978). Examples indude the determination of il:e thickness. the compositions ofearth media
in remote areas and the design of foundations and anchors. There have been claims of
excellent correlation between accelerations and specific material parameters for soils, but
on closer inspection, many of the modds for which the material parameters arc defined are
suitable only for static problems and small strains. In reality, the deformation is large in
the vicinity of a penetrator with significant impact velocity and the strain rates arc high. In
soils, the large deformations are often localized within a small but finite zone adjacent to
the penetrator. In order to predict such a zone with the usc of a continuum approach.
softening and. perhaps, a nonlocal feature must be included in the model. Other important
leatures such as strain hardening, rate effects, shear enhanced compaction and alternative
interface conditions are normally not included. Therefore. claims ofa direct relation between
material parameters and acceleration data must be suspect if these features have not been
included.

Previous investigations of dyn'lmic penetration can be categorized as follows: (a)
empirical equations to obtain tlnal depth of penetration based on full-scule test results. (b)
detailed numerical solutions utilizing one· and two·dimensional codes, and (c) analytical
solutions bascd on cylindrical and spherical expunsions to obtain a one·dimensional equa.
tion for describing the response of the penetrated media.

Young (1969. 1972, 1976) has devcloped empirical equations and techniques based on
over 500 full-scale earth penetration tests. The equations arc applicable for both conical
and more complex penetrators, and for homogeneous and layered earth media. His
approach can provide a deceleration profile and predict the depth of penetration to within
± 20'~o. However, this procedure provides very little information for evaluating constitutive
relations of the target media.

For normal penetration. where it is assumed that the penetrator strikes the surface of
the earth perpendicularly and that the penetrator does not change direction. the problem
is two-dimensional and amenable to numerical analysis provided care is taken to handle
the potential problem of the singularity that appears with a nonzero radial displacement
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along the penetrator axis. Numerous studies have been performed (B:ers and Chabai.
1977: Byers I!! al.. 1975. 1978: Thigpen. (974) in which good correlations with experimental
data havc been reported. Howcver. an examination of the constitutive equations used for
these studies show that elastic-plastic models with no rate dependence have been used. For
the most part. only the failure part of these models has been constructed to represent static
e,xperimelHal data: no attempt has been made to describe dilatation. shear enhanced
compaction. increase in ductility with mean pressure. softening and locali/~ltion. Since the
models do not accurately reflect soil behavior. there must be a reaSl1n for the gl'od corre­
lation. One possible explanation is that the penetrator resistance is an integrated drect in
which the result ofeach soil response Ii:ature is smt'areJ and the etli:cts of se\L'fal ti:atures are
countervailing. One purpose of this investigation is to determine whether several constitutive
features provide compensating etrects and. if so. to show how indi\idual charactaistics can
he separated.

Since the constitutive equation is nonlinear and large deformations lH:cur. it is not
reasl'llabh: to expect analytical solutions. However. a similarity approal.:h involving cyl­
indrical and spherical cavity expansions converts the partial ditkrential equations to a
singh: nonlinear ordinary difrerential equation rrom which numcrical solutions can hI..'
obtained. Analytical solutions arc available with additionallineari/ing assumptions (;\h'r­
wond. 1974: Longcope and Grady. 1971': Forrestal c{ al.. 1981 a.h: LIlllgCl'pC and Forn:staL
19SI; Forn.:stal and Longcope, 19R2; Norwood and Sears. 1982: Longcope and Fl.'rrcsta!.
19X3). Again. elastic-plastic models arc used: however. the great valuc of these con­
trihutions is that there are no hidden approximations associated with the spatial dis­
cretization associated with numerical procedures and the solutions prm'ide limiting cascs
for verifying computational procedures. Furthert1llln:, many of these analvses have becn
sllbstanti;ltnl with esperimcntal data obtaincd under carefully controlled CP!lditil'llS
(h>rrcst;d. II)S.\. I')S): Forrestal and Crady. 19S2: hll"l"l'St:t1I'{ ,d.. 1\)S~:l.b. 1')S(I). The
cylindrical cavity cxpansion approach involves the assumption that the motion of the targct
material is stridly radial. This study. a synopsis of the work hy Chiu (I')SX), utilizes the
same assumption which renders the problem one-dimensional in space.

i\ large amount of pcnctratllr data is available for soils so the opportunity tel evaluate
pwcl:durcs for using thl:sl: data to dl:tl:rminl: matl:fial propatil..·s I:xi,!S. To makl: this
correlation. solutions to thc governing equations arc required. flere. thc nonlinear Iinitc
elemcnt mcthod is lIsed to solve the axisYlllmctric one-dimensional pcnl:tration problem ror
conical ami ogivalnosc shapes. Existing analytical solutions arc uscd to verify the numerical
proccdure. Constitutive features that arc invcstigated include strain hardening. strain soften­
ing. ratt: dependence and various forms for the hydrostat. Interface conditions that arc
invt:sligated ineludt: variable Ctllliomb friction and a tluid layer with various pressurcs. The
dkcts arc described in terms or stress proliles in both spact: and time and of thc resultant
retarding pcnctrator forcc. Assumptions arc evaluated by comparing pn.:dictiolls of the
rcsultant rt:tarding force on the pt:netrator to experimental data. Results indicate that strain
hardl..'ning or the Prager Drucker yield surface is of SOIlle signilicance hut th:lt rate ctkcts
associated with this surface arc insignificant. On the other hand. hath strain hardcning and
ratc elkcts for the cap part orthe model arc very importantli.:'ltures. Conclusions eOlll.:erning
intcrfact: assumptions arc less c1t:ar although tht: ust: of a strain softcning yield surfacc
results in the prediction of a hydrostatic layer which is observahle in some expcrimclltal
tests. Separation 1)1' tht: soil from the penclrator is predicted for tht: ogival penetrator for
sullicielllly high vclOl:ities of penetration.

(jOVER;";I:-';(i H)lJATIO:-';S

I't'f/t'{ri/{or f/ose l/col1l('{ry

Consida thc geollletril.:al conligur;ltions shown in Fig. I for conical and ogival pen­
etrators impacting perpt:mlicularly to the surfacc ofa scmi-inlinite soil medium.;\ Lagrang­
ian cylindrical coordinate system is constructed so that the penctrator makes initial impact
with the soil at the origin of the R -Z plane where Z is positive in the direction of penetrator
motion. Let the length of the nose be L and the afterhody radius he 8,_ The gcometry of
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Fi~. I. 1';lr,"11<:lc'rs 'lSsoc;;tll:d with penclral"rs in carth mcdia. (a) Gcomctry of a conical nosc. (0)
~comclry of an \)~ival nosc. (..:) t!lspla..:cmcnt paramclers fur a ":lll1i..:.tl nose. and (tI) displacemcnt

paral1u:tcrs fllf an ogival nose.

the conical nose is defined by the angle Gl with Ian 'X '= RrfL and the geometry of the ogival
11l)Se oy the caliber radius head, ClII = i/2R r., in which i is the radius of eurv~lture used to
shape the nose. If the dircdion of penctration docs not change (normal penetration) the
prubkrn is two-dimcnsional in thc R-Z plane. If, in addition, motion is assumed to be
radial and each layer pcrpendicular to the Z-coordinate acts independcntly of adjacent
layers (no she~lr strcss in the RZ plane), then the result is a one-dimensional problem. If
the resistive force ~llong the cylindrical aftcrbody of the penetrator oehind the nose is
negligible. then the resultant retardation force for a givcn pcnetrator can be determined by
~tnalyzing the penetrator nose while it penetrates a distance equal to the length of the
nose. The penetration velocity, t·p ' is assumed to be constant for the analysis. Since the
experimcntal data considcred here arc in terms ofacceleration, and not depth of penetration.
no attempt is made to follow a penetrator until it comes to rest. Instead. the one-dimensional
study is limited to the time it takes the penetrator nose to become completely embedded.
However. because of the one-dimensional assumptions. the analysis for penetration is
identical for all starting locations of the nose tip including that of the free surface defined
by Z = o.

If (J is the Cauchy stress tensor. the traction is given by t '= 0" n for a surface with
outer normal n. The traction on the penetrator is equal and opposite to that of the surface
of the soil, so for the cylindrical system (R, Z, 0) of Fig. I, the axial component of the
traction acting on the pcnetrator is

(I)

with the assumption that O'u = O. For an increment in time of tit the increment in axial
displacement is tid = l'ptit and the increment in retarding force is
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with ilA = ~rcll,,~<1 and
ilL!

t1<1 =
cos 1.

in which .1.'1 is the increment in area of the projectile exposed to the soil. The horizontal
displacement of a material point at the origin is II". and .1<1 is the additional length of nose
that has come in contact with the soil. When (I) and (~) are combined. the result is

If I = () corresponds to the time when penetration starts. the following explicit
expressions follow for the conical penetrator:

For the case of an ogive. 'J. is not a constant but varies with d according to

L-d
tan'J. =

/f: -(L-d)~
Since f: - L ~ = (f - fl.{ ) '. the radial displacement at the origin hecomes

II" = RI-f+ ,if: -(L-d):.

To ohtain the increment in force. (5) and (6) arc suhstituted into (3).

(5)

(6)

II/tertilec l/sSlIlIIptiol/s

With the assumption of purely radial motion and continued soil contact with the
penetrator nose. the houlldary conditioll for the penetrated medium is completely specified.
With the assumption that Coulomb's law applies. there is an inherent contradiction unless
the coclliciel1t of fridiol1. C. is ;lssumeu to vary with thc stress compol1cnts SUl.:h that

(7)

where tt anu tn are the components of the traction tangential anu normal to the penetrator.
n.:spectively. The stress components are evaluated at R = () and result from the solution to
the governing equations. If the resultant state of stress is hydrostatic. then ~ must he zao.
If Cis specified. thcn the one-dimensional restriction must be relaxcd and thc problem
becomes two- or thrce-dimensional.

Initially, Longcopc and Forn.:stal (It)S3) assul11cd zero friction with the implication
from (7) that (fu = (fxx. In addition. thcy set (f"" = (f//, which dclines a hydrostatic statc
of strcss adjacent to the penetrator. Thcre is some post-tcst evidence (Forrestal and Grady.
It)S2) of surface melting of the nose and some wear on the af't hody, which supports the
concept of a hydrostatic layer. Longcope and Forrestal ( It)S3) also added a frictional term
associated with a nonzero coellicient of friction by arguing that for small cone angles
(tan x < 0.3) and small values of the coellicicnt offriction (~ < 0.25). the dill'crencc bet\vcen
radial and axial stress is insignificant and their govcrning equations remain valid.

With the proposed approach. if a l1uid layer is assumed to exist between the penetrator
and the surrounding medium. the resultant retarding force is obtained by replacing (f//

with - Ph in (3) where Ph (positive in compression) is the hydrostatic pressure in the lluid.
One possibility is to choose - Ph equal to the normal component of the traction. which
v;Hies as a function or time (nose pcnetf<ltion depth). Another variation is to choosc- Ph
equal to the maximum value of the radial stress. which occurs when the nose is completely
submerged. This assumption comes closest to simulating the results of Longcope and
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Forrestal (1983). who obtained a ...alue of radial stress at the penetrator surface that is
independent of time as a consequence of their similarity procedure.

Any assumption involving a fluid layer leaves the possible contradictions concerning
continuity of traction and motion oCthe fluid layer unresol...ed. Nevertheless. such assump­
tions are convenient. and. as this study shows. the differences in predicted retardation forces
associated with various assumptions are not that great.

Equations of motion and deformation
A material description is used in which R. Z and tl are the Lagrangian coordinates.

Since there is no rotation with the one-dimensional assumption. the rotation tensor. R. is
identical to the identity tensor. I. and the deformation gradient with respect to the material
frame. F = Grad r. for the current position. r. equals the right stretch tensor:

F = Rtf = U.

In terms of the radial displacement component. u. the physical components of U arc:

The stmin tensor. E. is choscn to hc In (U) So that thc physical comp(!Ocnts of E arc:

(8)

(9)

( 10)

Since the origin is a point in the domuin of the problem. and the displacement at the origin
is not zero. the circumferential strain is infinite at R = O. It is assumed that the constitutive
equation. which is given later. provides realistic values of stress under this condition.

The components of the Cauchy and rotated Cauchy stress tensors arc identical. The
only nonzero physical components arc the diagonal terms (fl(/(' (fu and (f"". With J dclincd
as the determinant of U. the equation of motion in the radial din:t:tion is

(II)

in which the body force is assumed to be negligible. Po is the mass density in the undeformed
configuration. and a superposed dot denotes a derivative with respect to time.

H'eak formulatiolls
For the finite clement 'lppro'lCh. weuk formulations of both the equation of motion

and the strain-displacement relations arc used. For an dement which is complete in first­
order polynomials. element shape functions in the master element space arc .vI = I -'1 and
N: = '1 in which 'I = (R - R~ )/11 and R~ denotes the coordin'lte of the element node closest
to the origin. All elements are assigned the same length. II. For weighting functions which
are constant but arbitrary over each element. the weak form of (10) becomes a set of
equations solved on an e1cmcnt-by-elcment basis:



H. L SlHK~HK anJ c.·P. CHIL

r. [ERR-ln(l+u"R)]RdR=O
.. [l>:

( 12)

in which the superscript e identifies the element and D denotes the domain of the element.
The volume element is proportional to R dR, Each strain component is assumed to be
constant over an element while the usual representation is used for the displacement:
ue = U~Nl +II~N~, With one-point quadrature. (l::l yields:

(
II". - lie)

ERR = In I + - h 1/ ( II" +IIC~)
E~" = In I + :: ~~ +- /1 ' (13 )

The smoothing associated with the weak fortn removes the singularity in the circumferential
strain for the clement which contains the origin, It is assumed that the predicted values for
stresses arc accurate for a suflieiently refined mesh.

A weak form of the equation of motion is obtained by multiplying each term of (II)
by a wcight function. I\'. and integrating over the domain. () ~ R ~ RM • whcre the maximum
value of R must be specified as part of each problem so that wa\e reflections do nol
contaminate the solution of interest ncar the penetrawr. To maintain a symmetric formu­
lation. the volume differential R dR is used instead of the area difl'crential. dR. which is
used sometimes to transform axially symmetric forll1ulatillns into forms similar to plane
pn1blcms in Cartesian systems. After an integration by parts. the weak form is

in which

f
'[ RJrr"/I ./rr""I,,, I' RII'ii rll' +11' dR--f/lRII'I;;" = () VII':

II '''1+11" II
II . 1+ R

( I-q

( 15)

is the r<ldi<ll component of the tr<lction reli:rred tl) the undeformed configuration and II" is
the r<ldial component of the unit normal vector. If the displacement insh:ad of the tr<lction
is prescribed. II' must be zero at that point. The boundary term v<lnishes at the origin since
R = O. and a displacement condition is <lssumed <It R = R" so the contribution from the
boundaries is zero. With II' = II'I,V I + 1I'~.v~ and R = R~ +I/h over each clement. the result
of performing the integration in (14) is that

( 16)

in which: II: represents the vector of nodal displacements <lnd

( 17)

denote the mass matrix and internal force vector. respectively. obtained <IS the sum of
contributions from e<leh clement. The element mass matrix is
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[

I 11* I 11*]3 + 126 + 11
Prj = pl)hR~ I h* I h*

6 + 12 3+4

(18)

Note that all components remain nonzero when the node of an element is at the origin
(R~ = 0). For direct time integration. a diagonal mass matrix is required. If such a matrix
is obtained by summing the rows of the consistent matrix of (18). the result is

[

I h*
-+-

[Jr]u = PohR~ 2 0 6 ( 19)

For large values of R~. both matrices assume forms proportion,1I to those obtained in plane
Cartesian systems.

The internal force vector is obtained by assuming the stress components are consant
over each element. One-point quadrature yidds

Tillll'ill/('yrtllioll

Suppose displacements and velocities are givcn. With the usc of a constitutive equation,
a sweep over the elements provides strains and stresses. Intern,1! fon:e components arc then
computed and allocated to nodes. If M,I> denotes the diagonal component of the Illass
matrix associated with node i. the approximation to the acceleration for each node is
obtained from

-f~
ii;' =

·\I,u .
(21 )

in which the superscript II implies the acceleration is associated with the discrete time I" = f1S.

f/ = 1.2.... fur a time step 01'.1'. The explicit integration

It, • I = Ii',' +sil,' /I;'" I = /I;' +sli;' .. I (22)

provides updated approximations for velocity and displacement. The process is repeated
until the complete time history is ohtained. The procedure is conditionally st,thle. so the
time step must he less th,tn the critical value which varies with the deformation since the
problem is nonlinear. Here. one-tenth of the initial critical time step is used to ohtain the
complete solution and numerical stahility is demonstrated hy the existence of finite values
for displacement.

COf/slill/li!"e e'il/atiof/

Although the prohlem is one-dimensional. all three principal components of stress and
strain are dilTerent. In order to make the prohlem analytically tractahle. Longcope and
Forrestal (19R3) made the assumption that the circumferential and axial components of
stress an: equal. Here there is no need to make such an assumption and. as a side bendit
of the numerical approach. the reasonableness of their assumption can be evaluated.
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Conventional constitutive equations for geological materials are given by Desai and
Siriwardane (1984). Because of the complexity of the problem and to preclude the need for
a large number of material parameters. only elementary versions of such models are
considered here.

For an isotropic. linearly elastic material. the rdation between components of stress
and elastic strain is:

in which C denotes the isotropic elasticity tensor given by

C = i.i ® i+GI

(23)

(24)

in terms of the Lam': constants i. and G. The second- and fourth-order identity tensors are
i and I. respectively. If the volumetric and deviatoric components of stress and strain are
defined by the equations:

0''' 0'+ Pi P = (tr O')/J Ed" = Ed + \C"i Eel' = - tr Ed; (25)

in which tr denotes the trace. an alternative form of (24) is

(26)

in which I..: = i. + 1(1 is thc bulk modulus. To allow for the possihility of a nonlinearly elastic
hulk hehavior. the bulk modulus is allowed to vary with elastic volumetric strain as follows;

(27)

in which "" .. and h arc material constants to he detcrmined from experimelltal data.
The inelastit: hehavior of geological materials is simulated with the use of the theory

of plasticity. It is assumed that the total ditrcrential of strain consists of elastic and plastic
parts:

(2X)

The plastic dilferential is obtained from the flow ruk:

(29)

in which 9 is the plastic potential. The int:rement (positive) in the parameter i. is chosen
such that the consistency condition dl = 0 is satislied. where the yield function, j: is given
in terms of the invariants of stress and plastic strain. The yield condition I = 0 is defined
such that f < 0 denotes an elastic state. Rate dependence is introduced through the over­
stress model of Malvern (1951) and Perzyna (1966) as follows:

(/)=/ if />0

(j') = 0 if l ~ o.
(30)

Strain hardening and softening models of the Prager-Drucker type are obtained by
selecting f to be of the form

in which

f == frr> = .f - If : (31 )
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(31)

is an invariant of the stress deviator (tr denotes the trace). H depends linearly on P and
nonlinearly on a plastic strain path invariant, defined in terms of the deviatoric part of the
plastic strain as foHows:

(33)

The specific functional form assumed for strain hardening is

(34)

in which £r is the value of £I' at the limit state. There is an implicit assumption that the
same value of £( is obtained at the limit state no matter which path is followed in stn:ss
space. The assumption is not valid in general but. for the current application where stress
paths arc similar, the asumption should not affect conclusions concerning other features of
the constitutive model. The limiting value of the hardening function, HI. is linear in P with
the slope, Jl, ohtained from experiment'll data. The limit stress in uniaxial compression is
.C The value of the hardening function at which inelasticity is lirst detected is denoted by
/10 for which a reasonable choke is lid!.. The sh'lpe of the strain hardening part ofa stress­
strain curve is governed by II. for which a typic'll value is 1/2.

If strain softening is assumed to occur. the function. /I. decre,lses when El' exceeds
E[. A functional form which is continuous and has a continuous first derivative with the
hardening function at the limit state. EI' = Ef., is given by:

/I == /1,,+(11,-/1,,)(1 +a£·)e "I:' EI' > £r.

p == (£1' - £0/£r.. (35)

The function decreases monotonically with E· from fit. and asymptotically approaches the
value II" at a rate governed by the parameter a. Since strain softening is frequently
accompanied by localization. it is not possible to correlate softening parameters with
experimental data in a direct manner. Indirect correlation is possible in some cases but,
here, the interest is an attempt to associate observed patterns with general features such as
softening. No strain softening is predicted if lI" == Ih. At least a small positive value for
fl" is usually necessary to preclude numerical ringing.

For many soils, a yield surface in the deviatoric space in the form of an irregular
hexagonal pyramid. described by the Mohr-Coulomb criterion. is considered to bc more
appropriate than the circular Prager -Drucker surface. The Mohr-Coulomb yield function
IS

r •• . .J, - .J.
.J Me == r - S Sill (I' - C COS '/" (36)

where r· and s· are the maximum shear and mean pressure, respectively. in a plane; f is
the cohesion. and (p denotes the angle of internal friction. A hardening and softening
formulation analogous to that given for the Prager-Drucker form is to let

(37)

and to write the yield function in the form J~IC == r· - H.

5AS ~':IO-t
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To preclude the excessive dilatation obtained from an associated How rule. the plasti-.:
potential 9 == .f is used with both the Prager Drucker and \1ohr Coulomh yield fundions.
However. such a ruk also implies that there is no inelastic volumetric compression. which
is not realistic. To overcome this deficiency a simple planar cap is incorporated. as described
by the yield function

in whi-.:h Po is the pressure at which inelastic deformation nrst occurs. Other material
parameters are Ct. C> c; and C.j' The two terms involving exponentials provide the charac­
teristic fealllres of stitfness softening anu then hardening whi-.:h are exhibiteu by the hydro­
stat for many soils. The cap is a-.:tivatl'd only by compn:ssivl' stress.:s so that Eph. th.: plasti-.:
volumetric strain. is a montonically in-.:reasing function obtainl'd (with du.: regard for thl'
sign) from an associated tlow rule for thl' cap. For a volul11dric strain rate elrect. the
corresponding l)\erstn:ss formulation is

(39)

in whidl i'e is a viscosity parametl'r detl'fminl'd from l'xpcrimental data.

f.if/('(/r~r l'!ast;e I'rohll'lfI

One way to ensure, as far as pllssihk. that the nun1\:rical algorithm is accurate is to
C\llllpare nUllll'rical and analytical siliutions. One class of probkl11s to which analytical
solutions exist consists of a cylindrical cavity in an inlinilc domain with the boundary of
the cavity h)aded axisYl11111etrically by either a displacel11ent or traction prescribed function.
The problem is one of plane strain and is governed by tile system of equations givl'n in the
previllus section. Selberg (1 1)51) gives an analytical siliution for isotropic. clastic Illedia
wl1\.:n; thc radius of tile cavity is R" and the boundary of thc cavity is sllbjectL'd to a unit
step pn:ssurl' when tilllL' is lero. If e is thL' radial wave velocity, then a dimensionless tillle
is dclined as t' == lcl - (R- R,,) 1/ R". For R R"co.c 2, and for scaled stresses <1 ;UI (J lUi ..... R R"

and rr;,,, == rr"",' R R". phlls of analyti-.:al and nUlllerical solutillllS an.: gi\en in Fig. 2. The
two soluti,)lls agree. ex-.:ept for numerical dispersion.

Longcope and Forrestal ( 19X]) provid..: an analytical solution for the distrihution of
radial stress for a L'llnical nose (tan ':t. == I 3. R, = O.07S m) penelrating antelope tulL They
used an e1astie-perketly plastic Mohr-Coulomh model with c1asli-.: moduli -.:onsisting of
thL' bulk modulus h' = h'" == 2.0 GPa (obtained by a linl.'ar lit to hydrostali-.: CXpl.'rilllental
data) and Poisson's ratio \' == 0.234. hI(' this probklll, the Mohr Coulomberitl.'rion r.:ducl.'s

~
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to a RR - rr"" = [I - (pl3)l.I~ + lIP with .I~ = 15 !\fPa and II = I. Neither a cap nor nonlinear
elasticity is used to modify the linear pressure~\"olumetricstrain relation. The initial mass
density is Pn = 16::!0 kg m' J and the velocity of the penetrator is l"p = 385 m s I. Therefore.
the total time of interest (the time of penetration), for a nose of length L = 0.26 m. is
I r = L/l"p = 0.675 x 10 ..\ s. The physical domain must he sulliciently large so that an clastic
wave does O()t renect oIl' the far houndary and crmtaminate the solution. The domain used
hen.: is Rr = Cl r with a pressure wave velocity of C = //\·/Pn. The analytical approach was
mimicked in the sense that the now ruh: was lllodilied to meet the assulllptionthat rr// = a"".
With a shift to the coordinate used I'M the analytkal approach. the linal distrihution of the
dimensionless stress a~N = aNN/.I~ is given in Fig. 3 which shows good correlation hetween
numerical and analytical results. The next section gives numerical results for cases where
the assumptions inherent with the analytical solution arc relaxed.

<fillER NUMERICAL SOI.UTIONS

l:'Iustic -pl'rfi'clly pluslic II/odels
Instead of invoking the assumption that the axial and circum Il:ren lial stresses arc

e4ual. the penetration problem from the previous section was analyzed for both a Mohr-­
Coulomb and a Prager Drucker yield surf~lce and with lhe nonassociated now rule descrihed
previously. Other than for this modification. all other aspects of the model and values for
material parameters were unchanged. The results obtained for the two yield functions were
barely distinguishaolc and the same conclusion was oOlained when more complicating
features were added to the models. Since the Prager -Drucker model results in a more
dlicic.:nt numerical algorithm. only predictions obtained with this model arc presented for
lhe remainder of the paper.

For the penetrator problem. the evolution of the dimensionless stress components
(actual stress divided by fc) in the tirst demt:nt is given in Fig. 4 in which t' = lit f .

Contrary to the assumption made to obtain the analytical solution. all stress components arc
significantly difrerent. although a /./ = II::!(ami + (J RR) which is a conseq uence of the llow rule
and a condition of plane strain. With the displact:ment at the origin prescribed. there is tht:
implicit assumption that the coeflicient of friction varies according to (7).

Slraill Itardcnilt!/ jiJffllillalilJlIs
A strain hardening version of the Prager Drucker yield function with no softening is

given hy (34) and (35) with If" = ilL' Rased on tits to triaxial compression data (Cooley.
1979). the hardening parameters arc: lin = Ih 2. Ef. = 0.15 and II = 0.5. With this modi­
fication. the magnitudes of all the stress components dropped from those of Fig. 4
hy approximately lOOk Therefore. strain hardening was retained for all the subsequent
analyses.
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The use of a hydrostat based on linear elasticity is clearly inappropriate if volumetric
strains are predicted beyond those for which experimental data arc available. To tit the
data and to provide realistic extrapolated shapes for the hydrostat. both nonlinear elasticity
and a plastic cap arc invoked through (27) and (3X). With ("I = 5 x 10", c: = -40.
c\ = 50 x I(t and ("4 = 50, the fit to the experimentally obtained hydrostat under static
conditions (Cooley, I97lJ) is shown in Fig. 5 for h' .. = (J.7 GPa, II = 0 (linear e1asticitylanu
II = 100 (nonlinear e1asticity).The curve that includes the ellcct of nonlinear elasticity is
more representative of typical hydrostats. As an example, Fig. 6 shows the ctlcct of the
parameter ("I for II = O. and similar plots show that the eflCcts of the other parameters are
easily obtained to assist in matching data for other m;tterials.

Because the hydrostat is extrapolated as a monotonically incre;lsing function past the
sct of experimental data shown in Fig. 5. the usc of linear elasticity and the cap result in
an increase in the magnitude of all the stress componcnts of about WY.1. Nonlinear elasticity
results in a further increase. although the inen:ase is not as great as might he expected
hecause an increase in stitl"ness results in a decrease in the maximum strain. The addition
of the cap counterbalances the lise of st rain hardening associated with the Prager-Drucker
surface and so an example is already available as to why the use of simplified models may
provide reasonable results. Nevertheless, for numerical solutions, there is no reason why
features, whidl an: known to be present, should not be induded in constitutive models.
Therefore, in subsequent analyses, strain hardening for both surfaces is retained but non­
linear elasticity is not indulkd because the experimental data are not discriminating enough
to justify such a degree of sophistication.
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Fig. 5. Pr.:ssur.: -volume curv.: for cxp.:ril11.:ntal data and cap model wilh linear and nonhn.:ar
clasticilv
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Rate ('.Deets
It is extremely ditlkult to perform experiments involving large strain rates to determine,

first, if a rate effect exists and, second, if a rate effect exists to evaluate pertinent material
parameters. Here, a rate effect is postulated and predictions are made to see if such an effect
is signific'lOt enough to be discernablc from experimental data.

When a mte clfect is added to the Pmgcr-Drucker surface with a linearly-elastic
hydrostat, there is essentially no change in predicted stresses from those obtained with no
rate effect. This puzzling result was resolved by observing th'lt the stress path for an element
adjacent to the penetrator is essentially tangential to the limit surface so that no rate effect
is activated. There is also considerable ringing of the stresses due to oscillations along the
circular yield surface in the deviatoric plane. The overstress version of the Pmger-Drucker
surface is not pursued further.

As might be expected, an overstress cap model shows significant rate ellccts. The
penetration problem under consideration e)(hibits strain r.ttes up to about SOUO s .. '. The
choice of Yc = lOx s I yields the given static hydrostat for a strain rate of Is', and a linear
hydrostat with slope 1\0 at a constant strain rate of SOOO s '. The result of using such an
overstress model is an incre.tse in the magnitude ofeach stress component ofapproximately
20°1... The overstress cap is retained in subsequent analyses.

Strai" so/tenin!!
Similar to the situation concerning rate effects, the strain softening assumption was

made to determine if penetration data could be used to support or disprove such a hypoth­
esis. The stmin softening function is given in (3S). The elfect of the parameter, a, is shown
in Fig. 7 for a uniaxial compressive stress path with 1/" = O.211L • For the penetrator
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Fig. 7. Uniaxial compressive stress-strain curves showing the effeet of the parameter a.
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prl'hkm. the \.'orresp,)nding strt:sses in the tirst ekment as fun\.'tions of time an: shown In

Fig. Sla). After a time \.'orn:sponding to ahout .W"" of the wtal penetration time. the
stre.;,es were const:ml and nearly cqual. Figure SIb) shO\ls the stress c\()lut!\1!1 when
II = 1).lllff!. \ h:dn"tati..: ,t:ll<.: \,1' .;trL'S' i, e\enrually di,pla:cd. Furthernll're. the rn:lg·
nituJe of the axial component of stress is mu\.'h higher than for \.'<lses where softening is not
im l'ked, with the result that the predicted retardatlPn fprce on the penetrator in\.'rcases
with strain sl'l'tening..-\n in\.'n:a.;e in the parameter. tI. \.'ause, the hydrostatlL' state t\' arpear
more qui\.'kl:. The e\111util)n to the hydrostati\.' .;tate is ,hown in Fig. l)ial. whl\.'h di,plays
the .;tress path in the ,paL'l: of P and \.

P/,('didiolls or f'Oldral,,/, /il/,('('s

'.;umerical analy,es were also performed for a conical pendrator with tan 1. = I 4, and
rl'r an \'gi\al pcnetra!llr with Cl<fl = 6 fur a range of\c!p(itic" Severe nUl1li.:rical oscillatiun.;
start"d t\l app\.'ar for the llgive because. as shown in Fig. l)(bl. the stres, path rever'e.;
directi\H1 and arpn):Khes the \lrigin. whi\.'h is an indication that separation is imminent.
SilKt' the algorithm is rt·.;tricted tl) a di.;pl;lc\,'rncnt pn.:scribed h\)llfldary condition. sq'arati\'n
is simulated hy assigning lew to the SlrL'SS c(ll11llllnenb In the lirst eklllent. Then the
calculati\)ns can pn1ceed \\itholll nunlerical instahilitlcs.

Pl,lls Ill' Ill;l\i 111 Ulll pr\.'diCli:d retarding r(m;eS on pl'nl'tratllrs arc shown in Figs 10('11.
JO(h) ,IIHI IOkL tllgclhn with e\p\.'rilllental,bta oht:lined by Forrestal and Grady (19l\2)
and Forrestal i'lal. (1\)l\4a, !9X6). The nomenclature lIsed in the plots is as rollows: PDHC
dell\'[L''; the hankllillt: Prager Drucker and cap Ilwdel. PI)IICO indicates the rrnious
Ill\)dcl but \\ith o\crstr\.'", \'iscopl;tsticity addL'd. and PDIICOSF is the model \\itl1 str;lill
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softening added to the other lCatures. For each penetrator geometry, the rate independent
model yields a penclrator force which is too low except for the lowest pendrator velocities.
For the majority of the velocity range, the overstress model without strain softening provides
rcasonahlc ,Ign:emcnt with experimental data while, generally speaking. the addition of
strain softening yields forces signilicantly above those indicated by experiments. llowever,
thc onc-dimcnsional assumption used for this analysis involves ,I kinematic constraint
whidl would be relaxed in a two-dimensional analysis, in which case the ,Igreement with
experimental data using the strain softening aspect might be accept'lhle.

These analyses for penetration force arc based on the displuccment prescribed condition
at the origin which is equivalent to invoking Coulomb's law with a variable coclJicielH of
friction, as given by (7). To evaluate the possible ell'ect of an assumption involving a
hydrost,ltic hlyer, figs II (a) and II (b) show predicted forces for a coniCal penetrator
(tan:x = 1/3) in which the strain hardening rate-independent and rate-dependent modds
arc: used. For these ligures the nomenclature is as follows: p = rr I<R indicates that the pressure
in the hydrostatic layer is set equal to the radial stress in the tirst dement, p = IfI denotes
a pressure equal to the normalcomponent of the traction, and p = (rr HI< )lna, is the assumption
that the pressure is equal to the maximum value of the radial stress. The first and hlst cases
lead to a simple analytical equation. As figs II (a) and II (b) show, each of these assumptions
yields values of predicted forces above those provided by the displacement prescribed
condition. In l~lct, the combination of u rate-independent model und two of the hydrostatic
layer assumptions provides very good correlation with experimental data, which is another
example of compens,lting ellccts. Another observation is that the ussumption of a hydro­
static layer provides an increase in the predicted force in a manner completely consistent
with that obtained through the use of strain softening.



f34~ H. L. SCHREYER and (,·P. CHIl'

300 ....-:'------- .....,
(a)

250

200
Z
'".......
<D 150
~

~
100

50

1000400 600 800

Impact Velocity (m/s)

o-/----.,...---,..-----_-J
200

250-r--------------,
(b)

200
~c_

Z 1S0
6
'"e
~ 100

o-l---y----r----,.--....,.-.-----l
200 400 600 800 1000 1200

Impact Velocity (m/s)

250-r------------.....,
(c)

200

0-/---,----.,...---.,.-.__-..,.-J

200 500 800 1100 1400

Impact Velocity (m/s)

Fig. Ill. Ma.timum ,lxial forcc as a fUI1.:tiol1 of pcnctralor vc/o.:ity. (al COl1i.:al pcnctralllr with
tan 1: = 1,3. (hl .:oni.:al pcnctralor wilh tan 1: = 1.4. and (e) ogival pcnctrator wilh Cw = 6.

('Ofll'er.cJCf/t·('

With explicit time integr,ltion, the critical time step is of the order of the minimum
time required for a wave to be transmitted across any dement in the mesh. As deformation
occurs. the critical time step may decrease; however. it is convenient to use a single time
step for each problem. For each of the ahove calculations. a time step of 5% of the initial
transit time of an clement for a domain (variable) spanned by 50 uniform clements is IIsed.
Because the problem is nonlinear there is the ligitimate question as to whether or not the
time step and clement length arc small enough. To indicate that the chosen increments are
satist~lctory. the conical penetrator with tan :c "'" I/3 and the model designated as PDHCO
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were used as a test case. When a time step of I% of the initial transit time is used. the stress
field is indistinguishable from the existing calculation. A comparison for time steps of 5%
and 30% of the transit time is shown in Fig. 12 and again. there are insignificant differences.
This result indicates that the selected time step is adequate. Figure 13(41) shows corresponding
stress distributions for meshes involving 25 and 50 elements and significant differences are
displayed. However. the difference in distributions obtained with 50 and 150 elements. as
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Fig. 12. Stresses in the lirst element for a conical penetrator with tan Cl = 1/3. a penetration velocity
of 614 m s' I and for time steps of 5% and 30% of initial clement transit time.
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shown in Fig. 13th). is not considacd sulliciently large to warrant the increased computer
time associated with the tina mesh.

CO:'-;CLl iSIONS

This study shows that a nunh:ric;t1 approach pn1\ ides lhe means for evaluating a
wide range of cllnstitutive features. penetration vdocities. penetratllr shapes and interLlce
assumptions for normal penetration in earth medi~1. I 'llWe\er. the one-dimelbiunal assump­
tion automatically implies Coulomb's law at the interface with a variable codlicient of
friction. The assumption of a fluid layer. although induded in the analysis. raises questions
clllll:erning the satisfaction of equations of motion in the layer.

Since the r-.lohr Coulomb and Prager Drucker models provided similar results. the
latter was used for convenience. It was found that strain hardening of the Prager-[)rucka
surface is of some signilicam:e with regard to penetra tor deceleration. but that the rate dl'ect
associated with this surface is not. The reason is that part of the stress trajectory for this
class of problem is tangential to the limit surface and. therefore, the rate dfect is nol
activated. However. for the cap part of the model. hoth strain hardening and rate dl'ects
an: significant factors with regard to the retarding force on the penelrator.

The postulate of strain softening for the Prager Drucka surface causes the defor­
mation to become more loc;dized near the penetrator. :\n interesting result is that. with
increased softening. the stress field adjacent to the penetrator hecomes more hydrostatic
in nature. This prediction is in accordance with the assumption based on experimental
observations that a fluid-type layer appears to den:lop in many cases, However. here the
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e"olution of the layer is a consequence of the constitutive equation and is not the result of
a separate assumption. An additional interesting point is that strain softening causes an
increase in retardation force over the force obtained from the use of a nonsoftening model.

For many cases. the inclusion of realistic constitutive features results in a prediction
of a retardation force above that indicated from experimental data. However. the one­
dimensional assumption introduces a kinematical constraint that may be the cause for the
higher prediction. in which case two-dimensional analyses might provide a better correlation
with experimental data.

The analysis of the ogival nose indicates that above a critical velocity. separation occurs
at some radius so that the segment of the penetrator beyond this radius does not contribute
to the retardation force. This result raises the possibility of the existence of an optimal
shape for producing the minimum retardation force. Again. a two-dimensional approach
is probably warranted if there is a design requirement on shape optimization.

The original objective involved the possible use of penetrator data to evaluate the
relative significance ofconstitutive features. These results show that there are countervailing
mechanisms present which means considerable caution must be taken in drawing con­
clusions concerning the features of the penetrated medium based on penetrator acceleration
data.

,·kAItIllr!",Ic'''f1ICII!' _. Thi~ re~eareh wa~ ~lIrporled ny the Air Force Olliee ufSeientitk R~·~earch. Di~eus~i(,",wIth
1\1. Forrc~lal and D. lon!=ellpe were p'lrlteularly helpful.
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