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Abstract—The nonlinear finite element method is used to solve the axisymmetric one-dimensional
penetration problem for conical and ogival nose shapes. An elastic-plastic theory is used in which
the yield surface consists of a Prager-Drucker surface and a planar cap. Existing analytical solutions
are used to verify the numerical procedure. The constitutive features investigated include strain
hardening. strain softening. rate dependence and various forms for the hydrostat. Interface con-
ditions are assumed to be Coulomb friction, fluid layer and no slip. Assumptions are evaluated by
comparing predictions of the resultant retarding force on the penetrator to experimental data.
Results indicate that strain hardening of the Prager-Drucker yield surface is of some significance
but that rate effects associated with this surface are insignificant. On the other hand, both strain
hardening and rate effects for the cap part of the model are very important features. The use of a
strain softening yield surface results in the prediction of a4 hydrostatic layer. This effect is observed
in some experimental tests. Separation of the soil from the penetrator is predicted for the ogival
penetrator for sufficiently high velocities of penctration. Qverall, the procedure provides @ method
for evaluating the relative importance of constitutive features to the penetration process and shows
how penetrator aceeleration data can be used to assist in determining material purameters.

INTRODUCTION

The correlation of material parameters with accelerometer data from a rigid penctrator has
the potential for several important engincering applications (Backman and Goldsmith,
1978). Examples include the determination of ice thickness, the compositions of carth media
in remote areas and the design of foundations and anchors. There have been claims of
excellent correlation between accelerations and specific material parameters for soils, but
on closer inspection, many of the models for which the material parameters are defined are
suitable only for static problems and small strains, In reality, the deformation is large in
the vicinity of a penetrator with significant impact velocity and the strain rates are high. In
soils, the large deformations are often localized within a small but finite zone adjacent to
the penctrator. In order to predict such a zonc with the use of a continuum approach,
softening and, perhaps, a nonlocal feature must be included in the model. Other important
features such as strain hardening, rate effects, shear enhanced compaction and alternative
interfuce conditions are normally not included. Therefore, claims of a direct relation between
material parameters and acceleration data must be suspect if these features have not been
included.

Previous investigations of dynamic penetration can be categorized as follows: (a)
empirical equations to obtain final depth of penctration bused on full-scale test results, (b)
detailed numerical solutions utilizing one- and two-dimensional codes, and (c) analytical
solutions based on cylindrical and spherical expansions to obtain a one-dimensional equa-
tion for describing the responsc of the penctrated media.

Young (1969, 1972, 1976) has developed empirical equations and techniques based on
over 500 full-scale earth penetration tests. The equations are applicable for both conical
and more complex penetrators, and for homogeneous and layered earth media. His
approach can provide a deceleration profile and predict the depth of penetration to within
+20%. However, this procedure provides very little information for evaluating constitutive
relations of the target media.

For normal penetration, where it is assumed that the penetrator strikes the surface of
the earth perpendicularly and that the penetrator does not change direction, the problem
is two-dimensional and amenable to numerical analysis provided care is taken to handle
the potential problem of the singularity that appears with a nonzero radial displacement
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along the penetrator axis. Numerous studies have been performed (Byers and Chabai.
1977 Byers eral. 1975, 1978 : Thigpen, 1974) in which good correlations with experimental
data have been reported. However. an examination of the constitutive equations used for
these studies show that elastic-plastic models with no rate dependence have been used. For
the most part, only the failure part of these models has been constructed to represent static
experimental data: no attempt has been made to describe dilatation. shear enhanced
compaction, increase in ductility with mean pressure. softening and localization. Since the
models do not accurately reflect soil behavior. there must be a reason for the good corre-
lation. One possible explanation is that the penetrator resistance is an integrated effect in
which the result of each soil response feature is smeared and the effects of several features are
countervailing. One purpose of this investigation is to determine whether several constitutive
teatures provide compensating effects and. if so, to show how individual characteristics can
be sepurated.

Since the constitutive equation s nonlinear and large deformations oceur, it is not
reasonable to expect analytical solutions. However. a similarity approach involving cvi-
indrical and spherical cavity expansions converts the partial differential equations to a
single nonlinear ordinary differential equation from which numerical solutions can be
obtained. Analytical solutions arc available with additional lincarizing assumptions {Nor-
wood, 1974 Longeope and Grady. 1978 : Forrestal er af.. 1981a.b : Longeope und Forrestal.
1981 ; Forrestal and Longeope, 1982 Norwood and Scars, 1982: Longeope and Forrestal,
F983). Aguin, clastic-plastic models are used : however, the great value of these con-
tributions is that there are no hidden approximations assoctated with the spatial dis-
eretization associated with numerical procedures and the solutions provide limiting cases
for vertfying computational procedures, Furthermore, many of these analvses have been
substantinted with oxperimental data obtatned under carclully controfled  conditions
{Forrestal, TOSI, 1983 Forrestal and Grady, 1982 Forrestal e al., 1984 b 1986). The
cylindrical cavity expansion approach involves the assumption that the motion of the target
material is strictly radial. This study, @ synopsis of the work by Chiu (1988), utilizes the
same assumption which renders the problem one-dimensional in space.

A Targe amount of penctrator data is available for soils so the opportunity to evaluate
procedures for using these data to determine matertal propertics exists, To make this
correlation, solutions to the governing equations are required. Here, the nonlincar finite
clement method is used to solve the axisymmetric one-dimensional penetration problen for
conical and ogival nose shapes, Existing unalytical solutions are used to verify the numerical
procedure. Constitutive features that are investigated include strain hardening, strain soften-
ing, rate dependence and various forms for the hydrostat. Intertace conditions that are
investigated inclade variable Coufomb friction and a fluid layer with various pressures. The
ctlects are deseribed in terms ol stress profiles in both space and time and of the resultant
retarding penctrator force. Assumptions are evaluated by comparing predictions of the
resultant retarding foree on the penctrator to experimental data. Results indicate that strain
hardening of the Prager Drucker yield surface is of some signiticance but that rate eftects
associated with this surface are insignificant. On the other hand. both strain hardening and
rate effects for the cap part of the model are very important features. Conclusions concerning
interface assumptions are less clear although the use of a strain softening yield surface
results in the prediction of a hydrostatic layer which is observable in some experimental
tests. Separation of the soil from the penctrator is predicted tor the ogival penetrator for
sufliciently high velocities of penetration.

GOVERNING EQUATIONS

Penetralor nose geometry

Consider the geometrical configurations shown in Fig. | for conical and ogival pen-
etrators impacting perpendicularly to the surface of a semi-infinite soil medium. A Lagrang-
jan cvlindrical coordinate system is constructed so that the penctrator makes initial impact
with the soil at the origin of the R-Z planc where Z is positive in the dircction of penetrator
motion. Let the length of the nose be L and the afterbody radius be R, The geometry of
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Fig. 1. Parameters associated with penetrators in carth media. (a) Geometry of a conical nose, (b)
geometry of an ogival nose, (¢) displacement parameters for o conical nose, and (d) displacement
parimeters for an ogival nose.

the conical nose is defined by the angle a with tan 2 = R, /L and the geometry of the ogival
nose by the caliber radius head, Cyyy = F2R,, in which Fis the radius of curvature used to
shape the nose., If the direction of penctration does not change (normal penctration) the
problem is two-dimensional in the R-Z plance. Il in addition, motion is assumed to be
radial and cach layer perpendicular to the Z-coordinate acts independently of adjacent
layers (no shear stress in the R-Z plane), then the result is a one-dimensional problem. I
the resistive force along the cylindrical afterbody of the penctrator behind the nose is
negligible, then the resultant retardation foree for a given penctrator can be determined by
analyzing the penetrator nose while it penetrates a distance equal to the fength of the
nose. The penetration velocity, v, is assumed to be constant for the analysis. Since the
experimental data considered here arein terms of aceeleration, and not depth of penctration,
noattempt is made to follow a penctrator until it comes to rest. Instead, the one-dimensional
study is limited to the time it takes the penetrator nose to become completely embedded.
However, because of the one-dimensional assumptions, the analysis for penetration is
identical for all starting locations of the nose tip including that of the free surfuce defined
by Z = 0.

If & is the Cauchy stress tensor, the traction is given by t = ¢+ n for u surfuce with
outer normal n. The traction on the penetrator is equatl and opposite to that of the surface
of the soil, so for the cylindrical system (R, Z,0) of Fig. 1, the axial component of the
traction acting on the penetrator is

ty= —GgSIN L, (n

with the assumption that 6,4 = 0. For an increment in time of At the increment in axial
displacement is Ad = r,Ar and the increment in retarding force is
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AF, = t,A4 with A4 =2ruAd and Au= A‘-lr. {2y
COS %

in which A4 is the increment in area of the projectile exposed to the soil. The horizontal
displacement of a material point at the origin is u,, and Au is the additional length of nose
that has come in contact with the soil. When (1) and (2) are combined. the result is

AF, = —InAtg, v n, tan x. )

If 1 =0 corresponds to the time when penetration starts, the following explicit
expressions follow for the conical penetrator:

u, = tanx  AF, = —2mdw tan® x. 4

For the case of an ogive. x is not a constant but varies with ¢ according to

L—d
tanx= . o (5)
V=L =dY’
Since 77—~ L7 = (F — R,)". the radial displacement at the origin becomes
U, = Ry —F+ JF ~(L—d). (6)

To obtain the increment in foree, (5) and (6) are substituted into (3).

Interface assumptions

With the assumption of purcly radial motion and continued soil contuct with the
penctrator nose, the boundary condition for the penetrated medium is completely specified.
With the assumption that Coulomb’s law applics, there is an inherent contradiction unless
the coctlicient of friction, £, is assumed to vary with the stress components such that

(= i _ TORT T (N

It Orpt+o . tan x
where ¢, and 1, are the components of the traction tangential and normal to the penetrator,
respectively, The stress components are evaluated at R = 0 and result from the solution to
the governing equations. If the resaltant state of stress is hydrostatic, then J must be zero.
If { is specified, then the one-dimensional restriction must be relaxed und the problem
becomes two- or three-dimensional.

Initially, Longeope and Forrestal (1983) assumed zero friction with the implication
from (7) that ¢,, = a4k In addition, they set a4, = ¢,,. which defines a hydrostatic state
of stress adjiucent to the penetrator. There is some post-test evidence (Forrestal and Grady,
1982) of surfuce melting of the nose and some wear on the aft body, which supports the
concept of a hydrostatic layer. Longeope and Forrestal (1983) also added a frictional term
associated with a nonzero coefficient of friction by arguing that for small cone angles
{tan 2 < 0.3} and small values of the coellicient of friction ( < 0.25), the difference between
radial and axial stress is insignificant and their governing equations remain valid.

With the proposed approach, if a fluid fayer is assumed to exist between the penctrator
and the surrounding medium, the resultant retaeding foree is obtained by replacing a,,
with — P, in (3) where P, (positive in compression) is the hydrostatic pressure in the fluid.
One possibility is to choose — P, cqual to the normal component of the traction. which
varies as a function of time {nose penctration depth). Another variation is to choose — P,
equal to the maximum value of the radial stress, which occurs when the nose is completely
submerged. This assumption comes closest to simulating the results of Longeope and
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Forrestal (1983). who obtained a value of radial stress at the penetrator surface that is
independent of time as a consequence of their similarity procedure.

Any assumption involving a fluid layer leaves the possible contradictions concerning
continuity of truction and motion of the fluid layer unresolved. Nevertheless, such assump-
tions are convenient, and. as this study shows, the differences in predicted retardation forces
assoctated with various assumptions are not that great.

Equations of motion and deformation

A material description is-used in which R, Z and 0 are the Lagrangian coordinates.
Since there is no rotation with the one-dimensional assumption, the rotation tensor, R, is
identical to the identity tensor. L. and the deformation gradient with respect to the matertal
frame, F = Grad r, for the current position, r. equals the right stretch tensor:

F=RU=U. (8)
In terms of the radial displacement component. «, the physical components of U are:

V41, 0 0
U] = 0 1+0 0] (9)

0 0 1

The strain tensor, E, is chosen to be In (U) so that the physical components of F are:
. ] u
Epp=In{ltuyy £,,=0 E,=In (I + R)‘ (10)

Since the origin is a point in the domain of the problem, and the displacement at the origin
is not zero, the circumicrential strain is infinite at R = 0. [t is assumed that the constitutive
equation, which is given later, provides realistic values of stress under this condition.

The components of the Cauchy und rotated Cauchy stress tensors are identical. The
only nonzcro physical components are the diagonal terms a44, 0, and 6,,. With J defined
as the determinant of U, the equation of motion in the radial direction is

o Trr Gon
Y [ Jo J o T
‘ ( “')4}-” T, w )= pyii, (1)

CRA 1
¢ +Hy R + R

in which the body force is assumed to be negligible, p,, is the mass density in the undeformed
configuration, and a superposed dot denotes a derivative with respect to time.

Weak fornudutions

For the finite element approach, weak formulations of both the cquation of motion
and the strain-displacement relations arc used. For an element which is complete in first-
order polynomuals. element shape functions in the master element space are ¥, = | —y and
Ny = ninwhich n = (R—= R5)//rand RS denotes the coordinate of the clement node closest
to the origin. All elements are assigned the same length, 4. For weighting functions which
are constant but arbitrary over each element, the weak form of (10) becomes a set of
equations solved on an element-by-element basis :
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[Ese—In(1+ )] RAR =0

Jos

/ ll\
Ercw—l l"’ - = U i
J;[ n( R)]RdR 0 (12)

in which the superscript ¢ identifies the element and D denotes the domain of the element.
The volume element is proportional to RdR. Each strain component is assumed to be
constant over an element while the usual representation is used for the displacement:
uf =1V, +15N .. With one-point quadrature, (12) vields:

. s — . s+ U
kR = + o ) = + RE T = 3
Exr In(l i / In(l IR lz) (13)

The smoothing associated with the weak form removes the singularity in the circumferential
strain for the clement which contains the origin. It is assumed that the predicted values for
stresses are accurate for a sufliciently refined mesh.

A weak form of the equation of motion is obtatned by multiplying cach term of (11
by a weight function, w, and integrating over the domain, 0 € R € Ry, where the maximum
value of R must be specified as part of cach problem so that wave reflections do not
contaminate the solution of interest near the penctrator. To maintain a symmetric formu-
lation, the volume differential R AR 15 used instead of the arca differential, dR. which is
used sometimes to transform axially symmetric formulations into forms similar to plane
problems in Cartesian systems. Atler an integration by parts, the weak form s

, Rlo S ,
J"v poRwii +w e T LAR T R B = 0 Ve (14)
| +up u
[t] l *" I{_
in which
Jo }
Ip=-- Kk Ny (135)
b4y

is the radial component of the traction reterred to the undeformed configuration and 2, is
the radial component of the unit normal vector. If the displacement instead of the traction
is prescribed, w must be zero at that point. The boundary term vanishes at the origin since
R =0, and a displacement condition is assumed at R = Ry so the contribution from the
boundarics is zero. With w = w, &, +w. N, and R = R +nh over cach clement, the result
of performing the integration in (14} is that

(M + 1/ =100 (16)
in which {u! represents the vector of nodal displacements and

M=) /=200 (7

[~

denote the mass matrix and internal force vector, respectively, obtained as the sum of
contributions from cach clement. The element mass matrix is
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l+h* l +h*
3T 1260 12 h
21 < * _ . 18
[M?] = pyhRS LR N . h R: (18)
6Ty

Note that all components remain nonzero when the node of an element is at the origin
(R$ = 0). For direct time integration. a diagonal mass matrix is required. If such a matrix
is obtained by summing the rows of the consistent matrix of (18). the result is

[M¢]p = pohRE| ~ ol (19)

2t

For large values of RS, both matrices assume forms proportional to those obtained in plane
Cartesian systems,

The internal force vector is obtained by assuming the stress components arc consant
over cach element. One-point quadrature yields

. . h 0+l h . | i — 1
—Saey RS+ 5 1+ ZR‘; Th + 2 S| T+ I

LY o . (20)

PR IR0 S -
Ser\ Koty NN ags o |2 N
Time integration

Suppose displucements and velocities are given. With the use ofa constitutive equation,
a sweep over the elements provides strains and stresses. Internal force components are then
computed and allocated to nodes. I M, denotes the diagonal component of the mass
matrix associated with node 4, the approximation to the acceleration for cach node ts
obtained from

. (21)

in which the superscript nimplies the aceeleration is associated with the discrete time = ns,
n=1,2,... foratime step of 5. The explicit integration

iy b . .. . 1
=gl ut =l (22)

provides updated approximations for velocity and displacement. The process is repeated
until the complete time history is obtained. The procedure is conditionally stable, so the
time step must be less than the critical value which varies with the deformation since the
problem is nonlincar. Here, one-tenth of the initial critical time step is used to obtain the
complete solution und numerical stability is demonstrated by the existence of finite values
for displacement.

Constitutive equation

Although the problem is onc-dimensional. all three principal components of stress and
strain are different. In order to make the problem analytically tractable, Longeope and
Forrestal (1983) madce the assumption that the circumferential and axial components of
stress arc cqual. Here there is no need to make such an assumption and. as a side benefit
of the numerical approach. the reasonableness of their assumption can be evaluated.
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Conventional constitutive equations for geological materials are given by Desai and
Siriwardane (1984). Because of the complexity of the problem and to preclude the need for
a large number of material parameters. only elementary versions of such meodels are
considered here.

For an isotropic. linearly elastic material, the relation between components of stress
and elastic strain is:

g=C.E": (23)

in which C denotes the isotropic elasticity tensor given by
C=/4i®i+Gl (24)
in terms of the Lamé constants 4 and G. The second- and fourth-order identity tensors are

i and L respectively. If the volumetric and deviatoric components of stress and strain are
defined by the equations:

' =6+Pi P=~(tre)/3 EM=E"4+ E" E" = —trg"; (2%
in which tr denotes the trace, an alternative form of (24) 3
o = 2GEM P = nEY (26)

in which & = 44 3G is the bulk modulus. To allow for the possibility of a nonlincarly clastic
bulk behavior, the bulk modulus is allowed to vary with clastic volumetric strain as follows :

K= woJt+ALTY 27)

in which x, and A are material constants to be determined from experimental dati.

The inclastic behavior of geological materials is simulated with the use of the theory
of plasticity. It is assumued that the total differential of strain consists of elastic and plastic
parts

dE = dE" + dE™. (28)
The plastic differential is obtained from the flow rule

dE™ = di(dy/Ca). 29
in which g is the plastic potential. The increment (positive) in the parameter 4 is chosen
such that the consistency condition df* = 0 is satisfied, where the yield function, /. is given
in terms of the invariants of stress and plastic strain. The yicld condition f = 0 is defined
such that f < 0 denotes an clastic state. Rate dependence is introduced through the over-

stress model of Malvern (1951) and Perzyna (1966) as follows:

Y=/ i >0

Uy=0 if [<0 G0

E™ = y(f)(Cg/ia):

Strain hardening and softening models of the Prager-Drucker type are obtained by
selecting f to be of the form

f = fop =5-H: @an

in which
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F=[itr(e® e}’ 32

is an invariant of the stress deviator (tr denotes the trace). # depends linearly on P and
nonlinearly on a plastic strain path invariant, defined in terms of the deviatoric part of the
plastic strain as follows:

E? = f{g tr (dE™ dEP)]' °. (33)
The specific functional form assumed for strain hardening is
RETEA .
H'-»’Hg‘f"(HL_HQ)S“\ :2‘ Et' OSE sEE

H, = (1 - %‘)_/;wp; (4

in which Ef is the value of £7 at the limit state. There is an implicit assumption that the
same value of E] is obtained at the limit state no matter which path is followed in stress
space. The assumption is not valid in gencral but, for the current application where stress
paths are similar, the asumption should not affect conclusions concerning other features of
the constitutive model. The limiting value of the hardening function, H, is lincar in P with
the stope, u, obtained from experimental data. The limit stress in uniaxial compression is
/.. The value of the hardening function at which inclasticity is first detected is denoted by
H, for which a reasonable choice is £ /2. The shape of the strain hardening part of a stress—
strain curve is governed by o, for which a typical valuc is 1/2.

If strain softening is assumed to oceur, the function, H, decrcases when EP exceeds
ET. A functional form which is continuous and has a continuous first derivative with the
hardening function at the limat state, £ = LT, is given by :

H = H,+l, —H) +aE*e " £ > Ep
E* = (E"— E})/EY. (35)

The function decreases monotonically with £* from H, and asymptotically approaches the
value H, at a rate governed by the purameter a. Since strain softening is frequently
accompanied by localization, it is not possible to correlate softening parameters with
experimental data in a direct manner. Indirect correlation is possible in some cases but,
here, the interest is an attempt to associate observed patterns with general features such as
softening. No strain softening is predicted if H, = H. At least a small positive value for
H, is usually necessary to preclude numerical ringing.

For many soils, a yield surface in the deviatoric space in the form of an irregular
hexagonal pyramid, described by the Mohr-Coulomb criterion, is considered to be more
appropriate than the circular Prager -Drucker surface. The Mohr-Coulomb yicld function
15

Sue = t*—5s* sin p—Fcos P, (36)
where t* and s* are the maximum shear and mean pressure, respectively, in a planc; ¢ is
the cohesion, and ¢ denotes the angle of internal friction. A hardening and softening
formulation analogous to that given for the Prager—Drucker form is to let

H, =s*singp~Fcos ¢ 37

and to write the yield function in the form fyc = t*— H.

A5 27:10-1
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To preclude the excessive dilatation obtained from an associated flow rule. the plastic
potential ¢ = §is used with both the Prager -Drucker and Mohr Coulomb vield functions.
However, such a rule also implies that there is no inelastic volumetric compression, which
is not reahistic. To overcome this deficiency a simple planar cap ts incorporated. as described
by the vield function

Joe = P=Pi—c(c SET et —e Ty (3R)

in which P, is the pressure at which inelastic deformation first occurs, Other material
parameters are ¢, ¢.. ¢ and ¢;. The two terms involving exponentials provide the charac-
teristic features of stiffness softening and then hardening which are exhibited by the hydro-
stat for many soils. The cap is activated only by compressive stresses so that £7°, the plastic
volumetric strain. is a montonically increasing function obtained (with due regard for the
sign) from an associated tlow rule for the cap. For a volumetric strain rate etlect. the
corresponding overstress tormulation ts

B =

op = AR (39)

in which 7, is a viscosity parameter determined from experimental data.

VERIFICATION OF COMPUTATIONAL APPROACH

Lincarly elastic problem

One way to ensure, as far as possible, that the numerical algorithm is accurate is to
compare nunierical and analytical solutions. One class of problems to which analytical
solutions cxist consists of a cylindrical cavity in an infinite domain with the boundary of
the cavity loaded axisymimetrically by either a displacement or traction preseribed function.
The problem is one of plane strain and is governed by the system of equations given in the
previous section, Selberg (1951) gives an analytical solution for isotropic, clastic media
where the radius of the cavity is R, and the boundary of the cavity 15 subpected to u unit
slep pressure when time is zero. [ ¢ is the radial wave velocity, then i dimensionless time
isdelinedast” = [of - (R ~ R/ Ry For R7R, = 2, and for scaled stresses oy = e R7RY
and a4, = m,,,\f'!\’f R,. plots of anatytical and numerical sofutions are given in Fig. 2. The
two solutions agree, exeept for numerical dispersion.

Longeope and Forrestal (1983) provide an analytical sotution for the distribution of
radial stress for a conical nose (tan 2z = 1/3, R, = 0.078 m) penetrating antelope tull. They
used an elastic-perfectly plastic Mohr-Coulomb model with clastic meduli consisting of
the bulk modulus « =, = 2.0 GPa (oblained by a lincar fit to hydrostatic experimental
data) and Poisson’s rutio v = 0.234, For this problem. the Mohr -Coulomb criterion reduces

1
0.5
3
‘o 0 t—
8 y '
H 0.5
Numaricol
Numerlcal
-1 4 Analytica!
Analyticat
-1.5 T —— T T
-1 t 3 5 7 3

Time, '

Fig. 2. Radial and circumferential stresses as functions of time at R Ry, = 2
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Fig. 3. Rudial stress as a function of position at time £ = 1.

O Ggr—apn = [L = (/D] S+ pP with f. = 15 MPa and g = 1. Neither a cap nor nonlinear
clasticity is used to modify the linear pressure-volumetric strain relation. The initial mass
density is p, = 1620 kg m " and the velocity of the penetrator is ¢, = 385 m s~ ' Therefore,
the total time of interest (the time of penctration), for a nose of length £ =0.26 m, is
tr= Lir, = 0.675 x 10" s, The physical domain must be sufliciently large so that an clastic
wave does not reflect off the far boundary and contaminate the solution. The domain used
here is Ry = cf, with a pressure wave velocity of ¢ = \/I\';/[)“A The analytical approach was
mintcked in the sease that the flow rule was modified to mect the assumption that a,, = 7.
With a shift to the coordinate used for the analvtical approach. the final distribution of the
dimensionless SUress 6 g, = 04/ /fc is given in Fig. 3 which shows good correlation between
numerical and analytical results. The next section gives numerical results for cases where
the assumptions inherent with the analytical solution are relaxed.

OTHER NUMERICAL SOLUTIONS

Elastic - perfectly plastic models '

Instead of invoking the assumption that the axial and circumfvrential stresses are
equial, the penetration problem from the previous section was analyzed tor both a Mohr-
Coutomb and a Prager - Drucker yield surface and with the nonassociated fow rule desceribed
previously., Other than for this modification, all other aspects of the model and values for
material parameters were unchanged. The results obtained for the two yield functions were
barcly distinguishable and the same conclusion wis obtained when more complicating
features were added to the models. Since the Prager -Drucker model results in a more
cthicient numerical algorithm, only predictions obtained with this model are presented for
the remainder of the paper.

For the penetrator problem, the evolution of the dimensionless stress components
(actual stress divided by f) in the first element is given in Fig. 4 in which ¢ = 7/1,.
Contrary to the assumption made to obtain the analytical solution, all stress components are
signiticantly different, although 6, = 1/2(64+ 62¢) which is a consequence of the flow rule
and u condition of plane strain. With the displacement at the origin prescribed, there is the
implicit assumption that the coefficient of friction varies according to (7).

Strain hardening formudations

A strain hardening version of the Prager: Drucker vield function with no softening is
given by (34) und (35) with M, = H, . Based on fits to triaxial compression data (Cooley.
1979). the hardening parameters are: Hy = H 20 ET = 0.15 and n = 0.5. With this modi-
fication, the magnitudes of all the stress components dropped from those of Fig. 4
by approximately 10%. Therefore, strain hardening was retained for all the subsequent
analyses.
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Fig. 4. Temporal plot of radial. circumferential and axial stress components in the first element.

The use of a hydrostat based on lincar elasticity 1s clearly inappropriate it volumetric
strains are predicted beyond those for which experimental data are available. To fit the
data and to provide realistic extrapolated shapes for the hydrostat, both nonlinear elasticity
and a plastic cap are invoked through (27) and (38). With ¢, = 5x 10", ¢, = —40,
¢y =50x 10" and ¢, = 50, the fit to the experimentally obtained hydrostat under static
conditions (Cooley, 1979) is shown in Fig. 5 for k, = 6.7 GPa. b = 0 (lincar clasticity) and
b = 100 (nonlincar clasticity). The curve that includes the cffect of nonlincar elasticity is
more representative of typical hydrostats. As an example, Fig. 6 shows the effect of the
parameter ¢, for b = 0, and similar plots show that the effects of the other parameters are
casily obtained to assist in matching data for other matcerials.

Because the hydrostat is extrapolated as a monotonically increasing function past the
set of experimental data shown in Fig. S, the use of lincar clasticity and the cap result in
an increase in the magnitude of all the stress components of about 8%. Nonlincar clasticity
results in o further increase, although the increase is not as great as might be expected
because an increase in stiffness results in a decrease in the maximum strain. The addition
of the cap counterbalances the use of strain hardening associated with the Prager-Drucker
surface and so an example is alrcady available as to why the use of simplified models may
provide reasonable results. Nevertheless, for numerical solutions, there is no reason why
features, which are known o be present, should not be included in constitutive models.
Therefore, in subsequent analyses, strain hardening for both surfaces is retained but non-
lincar elasticity is not included because the experimental data are not discriminating enough
to justify such a degree of sophistication.
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0 v ke T 1] T
0.00 0.05 0.10 0.15 0.20 0.25 0.30

Volumetric strain

Fig. 5. Pressurc-volume curve for experimental data and cap model with linear and nonhnear
clasticity.
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Rate effects

[tis extremely difficult to perform experiments involving large strain rates to determine,
first, if a rate effect exists and, second, if a rate effect exists to evaluate pertinent material
parameters. Here, a rate effect is postulated and predictions are made to see if such an effect
is significant enough to be discernable from experimental data,

When a rate effect is added to the Prager-Drucker surface with a linearly-elastic
hydrostat, there is essentially no change in predicted stresses from those obtained with no
rate effect. This puzzling result was resolved by observing that the stress path for an clement
adjacent to the penetrator is essentially tangential to the limit surface so that no rate effect
is activated. There is also considerable ringing of the stresses due to oscillations along the
circular yicld surface in the deviatoric plane. The overstress version of the Prager-Drucker
surfuce is not pursued further.

As might be expected, an overstress cap model shows significant rate effects. The
penctration problem under consideration exhibits strain rates up to about 5000 s "', The
choice of v, = 10%s ! yiclds the given static hydrostat for a strain ratc of I's ', and a lincar
hydrostat with slope &, at a constant strain rate of 5000 s ', The result of using such an
overstress model is an increase in the magnitude of each stress component of approximately
20%. The overstress cap is retained in subsequent analyses.

Strain softening

Similar to the situation concerning rate effects, the strain softening assumption was
made to determine if penetration data could be used to support or disprove such a hypoth-
esis. The strain softening function is given in (35). The effect of the parameter, 4, is shown
in Fig. 7 for a uniaxial compressive stress path with f, = 0.2H,. For the penetrator

0.8 4

0.8

Stress, o

0.2 4

0B T * T T
Q.0 B 0.2 0.3 0.4 0.5

Strain

Fig. 7. Uniaxial compressive stress-strain curves showing the effect of the parameter a.
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problem, the corresponding stresses in the first element as functions of time are shown in
Fig. Sta). After a ume corresponding to about 4%, of the total penetration ume. the
stresses were constant and neuarly cqual. Figure 8(b) shows the stress evolution when
H o= 001H, . A hydrostatie state ob stress s eventually displayed. Furthermore, the mag-
nitude of the axial component of stress is much higher than for cases where softening is not
imvoked. with the result that the predicted retardation force on the penetrator increases
with strain softening. An increwse in the parameter, . causes the hydrostatic state to appear
more quickly. The evolution to the hydrostatic state 1s shown in Fig. 9(a). which displays
the stress path in the space of Pand 7

Predictions of penctrator forees

Numerical analyses were also performed for a conical penetrator with tan x = 1 4. and
for an ogival penetrator with Cgye = 6 for a range of velocitics. Severe numerical oscillations
started to appear for the vgive because. as shown in Fig. 9(b). the stress path reverses
direction and approaches the erigin, which is an indication that separation is imnunent,
Since the algorithm is restricted to a displacement preseribed boundary condition, separation
s sunubited by assigming sero to the stress components m the first element. Then the
calculations cun proceed without numerical instabilities,

Plots of maximum predicted retarding torees on penctrators are shown in Frgs 10,
FO(hy and 130), together with experimental data obtained by Forrestal and Grady (1982)
and Forrestal ef af. (19840, 1986}, The nomenclature used in the plots is as follows: PDHC
denotes the hardening Prager Drucker and cap model, PDHCO indicates the previous
model but with overstress viscoplsticity added, and PDHCOSE s the model with straimn

-
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softening added to the other features, For cach penetrator geometry, the rate independent
model yields a penctrator Torce which is too low except for the lowest penctrator velocities.
For the majority of the velocity range, the overstress model without strain softening provides
reasonable agreement with experimental dati while, generally speaking, the addition of
strain softening yields forces significantly above those indicitted by experiments. However,
the one-dimensional assumption used for this analysis involves a kinematic constraint
which would be relaxed in a two-dimensional analysis, in which casce the agreement with
experimental data using the strain softening aspect might be aceeptable.

These analyses for penetration foree are based on the displucement preseribed condition
at the origin which is equivalent to invoking Coulomb’s law with a variable coeflicient of
friction, as given by (7). To cvaluate the possible effect of un assumption involving a
hydrostatic layer, Figs T(a) and 11(b) show predicted forces for a conical penctrator
(tan 2 = 1/3) in which the strain hardening rate-independent and rate-dependent models
are used. For these igures the nomenclature is as follows : p = a4, indicates that the pressure
in the hydrostatic layer is set equal to the radial stress in the first clement, p = i denotes
a pressure equal to the normal component of the traction, and p = (6 45) . 15 the assumption
that the pressure is equal to the maximum value of the radial stress. The first and fast cases
lead to a simple analytical equation. As Figs 1{a) and 1 [{b) show, each of these assumptions
yields values of predicted forees above those provided by the displacement prescribed
condition. In fact, the combination of a rate-independent model and two of the hydrostatic
layer assumptions provides very good correlation with experimental data, which is another
example of compensating effects. Another observation is that the assumption of a hydro-
static layer provides an increase in the predicted foree in a manner completely consistent
with that obtained through the use of strain softening.
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Fig. 10 Maximum axial force as a function of penetrator velocity, (a) Conical penetrator with
tan 2 = 173, (b} conical penetrator with tan 2 = 14, and (¢) ogival penctrator with Cyyy = 6.

Conrergence

With explicit time integration, the critical time step is of the order of the minimum
time required for a wave to be transmitted across any clement in the mesh. As deformation
occurs, the critical time step may decrease : however, it is convenient to usc a single time
step for each problem, For each of the above calculations, a time step of 5% of the initial
transit time of an element for a domain (variable) spanned by 50 uniform elements is used.
Because the problem is nonlincar there is the ligitimate question as to whether or not the
time step and element length are small enough. To indicate that the chosen increments are
satisfactory, the conical penetrator with tan 2 = 1/3 and the model designated as PDHCO
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Fig. 11 Maximum axial force for a conical penctrator with tan a = 1/3 and various interface
assumptions. (a) Rate-independent model and (b) overstress rate-dependent model.
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were used s a test case. When a time step of [ % of the initial transit time is used, the stress
field is indistinguishable from the existing calculation. A comparison for time steps of 5%
and 30% of the transit time is shown in Fig. 12 and again, there are insignificant differences.
This result indicates that the selected time step is adequate. Figure 13(a) shows corresponding
stress distributions for meshes involving 25 and 50 elements and significant differences are
displayed. However, the difference in distributions obtained with 50 and 150 elements, as

.

Fig. 12. Stresses in the first element for a conical penetrator with tan x = 1/3. a penetration velocity
of 614 m s~ and for time steps of 5% and 30% of initial element transit time.
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shown in Fig. 13(b), is not considered sulliciently Lurge to warrant the increased computer
time associated with the finer mesh.

CONCLUSIONS

This study shows that a numcrical approuch provides the means for evaluating o
wide runge of constitutive features, penctration velocities, pencetrator shapes and interface
assumptions for normal penetration in carth media. However, the one-dimensional assump-
tion automatically implies Coulomb’s law at the interface with a variable coctlicient of
friction. The assumpuon of a luid layer, although included in the analysis, ratses questions
concerning the satisfaction of equations of motion in the layer.

Sinee the Mohr Coulomb and Prager Drucker models provided similar results, the
fatter wis used for convenience. [t was found that strain hardening of the Prager-Drucker
surtace is of some significance with regard to penetrator deceleration, but that the rate eftect
associated with this surface is not. The reason is that part of the stress trajectory tor this
class of problem is tangential to the himit surface and, therefore, the rate cffect is not
activated. However, for the cap part of the model, both strain hardening and rate effects
are significant factors with regard to the retarding force on the penetrator.

The postulate of strain softening for the Prager Drucker surface causes the detor-
mation to become more localized near the penetrator. An interesting result s that, with
increased softening, the stress field adjacent to the penetrator becomes more hydrostatic
in nature. This prediction is in accordance with the assumption based on experimental
obscervations that a fluid-type laver appears to develop in many cases. However, here the
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evolution of the laver is a consequence of the constitutive equation and is not the result of
a sepirate assumption. An additional interesting point is that strain softening causes an
increase in retardation force over the force obtained from the use of a nonsoftening model.

For many cases. the inclusion of realistic constitutive features results in a prediction
of a retardation force above that indicated from experimental data. However, the one-
dimensional assumption introduces a kinematical constraint that may be the cause for the
higher prediction. in which case two-dimensional analyses might provide a better correlation
with experimental data.

The analysis of the ogival nose indicates that above a critical velocity. separation occurs
at some radius so that the segment of the pencetrator beyond this radius does not contribute
to the retardation force. This result raises the possibility of the existence of an optimal
shape for producing the minimum retardation force. Again. a two-dimensional approach
is probably warranted if there is a design requirement on shape optimization.

The original objective involved the possible use of penetrator data to evaluate the
relative significance of constitutive features. These results show that there are countervailing
mechanisms present which means considerable caution must be taken in drawing con-
clusions concerning the features of the penetrated medium based on penetrator acceleration
data.

Acknowledgements —-This research was supported by the Air Foree Office of Scientific Rescarch. Discussions with
M. Forrestal and DL Longeope were particularly helpful.

REFERENCES

Backman, M. E. and Goldsmith, W. (1978). The mechanies of penetration of projectiles into targets. Int. J. Engnyg
Sci. 16, 1949,

Byers, R, K. and Chabai, A J. (1977). Penctration caleulations and measarements for a layered soil target. Int.
J. Numer. Analvt. Meth. Geomech, 1, 107 138,

Byers, R, K., Chabiai, AL S and Walsh, RO (1975). Predictions of projectile penctration phenomena and
compurison with experiments in a sotl medium, SAND 75-0174, Sandia Laboratories, NM.

Byers, R, K., Yarrington, Pand Chabat, AL L. (1978). Dynamic penctration of soil media by slender projectiles.
Int. J. Engng Sci. 16,835 844,

Chiy, C-P(1988). The theoretical effeets of material models on the predicted response of the medium surrounding
a penetrator, Ph.D. Dissertation, Department ot Civil Engineering, The University of New Mexico.

Cooley, C.HL (1979). Testing program on TTR antelope tufl, Terra Tek, Salt Lake City, Utah, letter reports to
Sandia National Laboratories, August 1979, July 1980 and Junuary 1981,

Desai, C. 8. and Sirtwardene, H. J. (1984). Constitutive Laws Jor Engineering Materials with Emphasis on Geologic
Muaterialy, Prentice-Hall, Englewood Cliffs, NJ.

Forrestal, M. L (1983). Forces on conical-nosed penetrators into targets with constant shear strength. Mech.
Mater 2,173 -177.

Forrestal, M. L (1983}, Penctrators into dry porous rock. fut, J. Solids Structures 22, 14851500,

Forrestul, M, 1 and Grady, D. E. (1982}, Penctration experiments for normal impact into geological targets. Ine.
J. Solids Structures 18, 229 234,

Foreestal, M. 1 and Longeope, D, 8. (1982). Closed-form solutions for forces on conical-nosed penctrators into
geological targets with constant shear strength, SAND 82-1177J, Sandia Laboratories, NM.

Forrestal, M. J., Lee, L. M. and Jenrette, B. D, (1986). Laboratory-scale penetration experiments into geological
targets to impact velocities of 2.1 km,'s. J, Appl. Mech. 83, 317 -320.

Forrestal, M. 1, Lee, Lo M, Jenrette, B, D. and Setchell, R. B, (1984a). Gas-gun experiments determine forces
on penetrators into geological turgets. J. Appl. Mech. 51, 602 -607.

Forrestal, M. 1., Longeope, D. B., Jenrette, B. D. and Lee, L. M. (1984b). Pressure-bar experiments determine
forces on penctrators into geological targets. fut. J. Imp. Engng 2, 231 -238.

Forrestal, M. J., Longeope, D, B. and Norwood, F. R_{(1981a). A model to estimate forces on conical penetrators
into dry porous rock. J. Appl. Mech. 48, 25 -29,

Forrestal, M, J., Norwood, F. R, and Longeope, D. B. (1981b). Penetration into targets described by locked
hydrostats and shear strength. Ine, J. Solids Structures 17, 915 924,

Longeope, 1. B. and Forrestal, M. J. (1981). Closed-form approximations for forces on conical penetrators into
dry porous rock. J. Appl. Mech. 48,971 972,

Longeope, D. B. and Forrestul. M. 1. (1983). Penctration of targets described by a Mohr Coulomb failure
criterion with a tension cutoll, J. Appl. Mech. 50, 327 -333.

Longeope, D. B. and Grady, D. E. (1978). Initial response of a rock penetrator. J. Appl. Mech. 48, 559 -564.

Malvern, L. E. (1951). The propagation of longitudinal waves of plastic deformation in a bar of material exhibiting
a strain rate effect. Trans. ASME J. Appl. Moech. 18, 203-208.

Norwood. F. R. (1974). Cyhndrical cavity expansion in a locking soil. SLA-74-0201, Sandia Laboratorics. NM.

Norwood, F. R. and Sears. M. P. (1982). A nonlinear model for the dynamics of penetration into geological
targets. J, Appl. Mech. 49, 26 -30,

Perzyna, P. (1966). Fundamental problems in viscoplasticity. Adv. Appl. Mech. 9, 243-377.



1346 H. L. SCHREYER and C.-P. CHit

Selberg. H. L. (1951). Transient compression waves trom spherical and cyhindncal cavities. Arkie Fysik S,
97 -10%.

Thigpen. L. (1974). Projectile penetration of elastic-plastic earth media. J. Geotech. Engny Dic.. ASCE. 100,
279292

Young, C. W. (1969). Depth prediction for earth penetrating projectiles. J. Soil Mech. Found., ASCE. SM3.
K03 817

Young, C. W. {1972). Empirical equations for predicting penetration performance in layered carth materials for
complex penetrator contigurations. SC-DR-720523. Sandia Laboratories, NM.

Young. C. W. (1976) Status report on high velocity soil penetration program. SAND 76-0583, Sundia Laboratories.
NM.



